
RESERRCH ESTABLISHMENT OTTANA (ONTARIO) I M BARRY
DEC 67 DREO-TN-67-31

LOCLRSSIFIED F/0 17/4 ML

E,1hhrhhE

IIIIL 2
L6 1132.

__n rim -- flfl__11111 L25i

MICROCOPY RESOLUTION TEST CHART

JRf At, tANnlARfq 193 A

S'..

r%0

pS

'PS
S

.~~- 0
+ % %..W-JI-,P- f-

-.
'......

- ZZV -t'

H* LUjyA

m :'ainl:--. $ft* elix.-

r'UATO. SY

- ~ ow W ." --N I -SEL' TD

DEEICESESEC ETBLISKM -

1Eol~P7 TEST

National Defense
Deec ationale

OBJECT-ORIENTED
SIMULATION OF EW SYSTEMS

by OTIC
Brian M. Barry e ELECTE

Radar ESM Section MAY 19 1988

DD
ST AEM A

A"p107 d for Pbi eos

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 87-31

PCN December 1967
011 LB13 Ottawa

% %%

M

ACKNOWLEDGEMENT

The author wishes to acknowledge his debt to the many colleagues who have

engaged in stimulating and thought provoking discussions about simulations and
validation over the years, including Alan Sewards, Dave Thomas, Fred Symons,

Stan Leroy, Leo Makela and David Jones. Special thanks are due to Allen Brown,

who through his painstaking efforts as editor significantly improved the

presentation of this material.

Ar- ;e-oail"tor

-- -4

K

F iii

I

r, . .'e,'2,e 7er".,
"

e,.-a., a,",;, #
,

" ",' " '" " ." " .- .'-' * ,' -,, ," ,,.,",V•

IN V

ABSTRACT

Simulations of complex EW systems are difficult to build and virtually
impossible to thoroughly validate. As a consequence, most EW systems
engineers tend to regard results derived from simulations as suspect,

preferring to rely instead on laboratory testing and field trials for

performance evaluations. We suggest that the real problem may be that
traditional simulations do not provide the kind of modelling and analysis
tools which the systems engineer really needs. In this paper a prototype for
a new kind of EW simulation environment which supports an object-oriented
approach to modelling and simulation is described. We will provide some

background information on object-oriented programming, describe the software
architecture of the simulation environment, and discuss several examples which
illustrate its use.

RESUME

La simulation de syst~mes complexes de guerre 6lectronique est difficile

mettre en oeuvre et pratiquement impossible a verifier. Par consequent ceux

qui pratiquent le genie des syst~mes ont tendance a en considerer les
r~sultats comme douteux, prdf6rant en g6n6ral estimer la performance de ces

syst~mes par des mesures en laboratoire ou en champs d'essais. Il est sugg~r6

ici que le problhme r6el est du au fait que les m6thodes de simulation

traditionelles n'offrent pas le genre d'outils necessaires a la mod~lisation

et a l'analyse dont le g6nie des syst6mes a r~ellement besoin. Le prototype

d'un nouveau genre d'environnement sp~cialis6 pour la simulation de syst~mes
de guerre 6lectronique et bas6 sur une configuration du logiciel a structure

d'objets est d~crit dans se document. De l'information g~n~rale sur la
programmation en structure d'object est offerte ainsi qu'une description de

l'architecture du logiciel utilis6 pour le simulation. Un certain nombre

d'exemples servant illustr6 l'ulilisation du nouvel environnement sont aussi

discut~s.

v

% %,

KNNx) MI

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENT iii
ABSTRACT/RESUME v
TABLE OF CONTENTS vii
LIST OF FIGURES ix

LIST OF TABLESxiii

1.0 INTRODUCTION 1

2.0 BACKGROUND: THE NEED FOR NEW APPROACHES 3

2.1 Why do Conventional Simulations Lack Credibility 3
2.2 Why is Validation so Time-Intensive 6
2.3 Requirements for an EW Simulation Environment 7

2.3.1 Simulations Should be Understandable and Verifiable . . . 8

2.3.2 Simulations Should be Easy to Build and Use 9
2.3.3 Summary 10

3.0 OBJECT-ORIENTED EW MODELLING 10

3.1 The Smalltalk Programming Language i.11
3.2 An Overview of the Simulation Architecture 14

3.2.1 The Environment Model 14
3.2.2 The ESM System Model 18
3.2.3 Simulation Time Management 20

3.3 An Overview of the User Interface 21

3.3.1 Monitors 22
3.3.2 Browsers 24

3.4 Dimensional Analysis 47

4.0 REFLECTIONS ON LESSONS LEARNED AND THE WAY AHEAD 49

4.1 Assessment of the Prototype Simulation Environment 49
4.2 Future Developments 53

5.0 CONCLUSION 54

6.0 REFERENCES 55

vii

I V
'U%
~~~r r ~ ~ ~ ~ % * ge 0 -%,%-. .r~~ ei, ' %5~ . .~*.* .. y..,



LIST OF FIGURES

PAGE

FIGURE 1: Relationships Between Models, Simulations, and Reality. 2

FIGURE 2: Multiprocessor System Architecture .............. . .. 4

FIGURE 3: Single Node Configuration ........ ................ 5

FIGURE 4: Typical Smalltalk Display .... ................ ... 12

FIGURE 5: Structure of Object-Oriented Modelling System ... ...... 15

FIGURE 6: Scenario Database Structure .... ............... ... 17

FIGURE 7: Receiver/Processor Structure .... ............... ... 19

FIGURE 8: Layout of Monitor Displays ..... ................ ... 23

FIGURE 9: Scenario Browser: Layout .... ................ ... 25

FIGURE 10: Scenario Browser: Selecting a Scenario .......... . 26

FIGURE 11: Scenario Browser: Adding a New Platform (i) ......... ... 27

FIGURE 12: Scenario Browser: Adding a New Platform (ii) ...... .. 28

FIGURE 13: Scenario Browser: Adding a New Platform (iii) ...... ... 29

FIGURE 14: Scenario Browser: Adding a New Platform (iv) ...... .. 30

FIGURE 15: Scenario Browser: Adding a New Platform (v) ......... ... 31

FIGURE 16: Scenario Browser: Adding a New Platform (vi) ...... .. 32

FIGURE 17: Scenario Browser: Setting Platform Speed (i) ...... .. 33

FIGURE 18: Scenario Browser: Setting Platform Speed (ii) ...... ... 34

FIGURE 19: Scenario Browser: Updating the Clock and Platform

Positions ......... ........................ . 36

FIGURE 20: Scenario Browser: Displaying a Platform Course .. ..... 37

FIGURE 21: Scenario Browser: Adding a New Emitter (i) ....... ... 38

ix

*~~~~~~- J1~''dP'~I



LIST OF FIGURES (cont)%

PAGE

FIGURE 22: Scenario Browser: Adding a New Emitter (ii) ......... ... 39

FIGURE 23: Scenario Browser: Adding a New Emitter (iii) ...... .. 40

FIGURE 24: Scenario Browser: Inspecting Emitter Modes (i) . .... 41

FIGURE 25: Scenario Browser: Inspecting Emitter Modes (ii) .. ..... 42

FIGURE 26: Scenario Browser: Changing a Mode Parameter (i) ....... 43

FIGURE 27: Scenario Browser: Changing a Mode Parameter (ii) .. .... 44

FIGURE 28: Scenario Browser: Editing the Modes Schedule (i) .... 45

FIGURE 29: Scenario Browser: Editing the Modes Schedule (ii) .... 46

FIGURE 30: Smalltalk Work Session: Illustrating
Dimensioned Numbers ...... ................... . 48

FIGURE 31: Smalltalk Work Session: Attempting a Dimensionally
Inconsistent Operation ...... .................. ... 50

xi



* ~ ~ ~ ~ ~ ~ LS OF TABLES. . M. . ..

PAGE

TABL 1: Assesmet o Prootye SmulaionEnvionmnt . .. .. 5

xiii

0",p

------- --- J..



I.

1.0 INTRODUCTION

EW technology and techniques are constantly evolving in response to.a

changing signal environment. As EW systems continue to grow in complexity,
systems analysts and design engineers are increasingly using simulations to
understand and predict system performance. Unfortunately, simulation
technology has not been able to keep pace with the advances which have been
made in EW systems technology. It is commonplace for simulations of

large-scale systems to exhibit problems of intelligibility, modifiability,

credibility, validity, and performance.

We distinguish between a conceptual or abstract model of some
real-world phenomenon, and a digital simulation of that phenomenon (i.e. a

computer program which realizes the abstract model). By verification we mean
the process of demonstrating that the simulation is a true and correct

realization of the abstract model. Validation is the process of proving that
both the model and its realization, the simulation, adequately represent those

aspects of the phenomenon under study. Clearly the definition of "adequate"
depends on the intended application of the simulation. Note also that we have
been careful to use the phrase "adequately represent" rather than "correctly
represent": absolute validity is obviously an unreachable goal. Credibility
refers to the users' belief that the simulation will be a good predictor of
real-world behaviour. Credibility is an attribute which is gradually acquired

by a simulation. One hopes that credibility will be an end-product of the

validation and verification processes. These ideas are summarized in Figure 1.

In practice, most EW systems engineers tend to regard results derived
from simulations as suspect, preferring to rely instead on laboratory testing

and field trials for performance evaluations. In this paper we will suggest

some underlying explanations for these credibility problems based on our own
experience in developing and using simulations of EW systems. A central issue
is that, too often, validation is an afterthought, whereas it should be a

design goal. To remedy this, we propose that more effort should be expended
on developing software tools which directly support the design of
simulations. In recent years it has become clear that programming support
environments can make software engineers more productive and at the same time
improve software reliability. We will argue (hopefully persuasively!) that
the utility of EW simulations could be significantly increased if analogous

simulation support environments were developed specifically for EW
applications. In our discussion, we will try to identify the capabilities
which we believe such a programming environment should have, and we will
describe our approach to implementation.

The organization of this paper is straightforward. In Section 2, the
shortcomings of current simulation methodologies are examined. Based on this
analysis, some of the features which one would like to see in a programming

environment specifically designed for developing EW simulations will be
discussed. Section 3 will describe a prototype of an object-oriented EW
simulation environment written in the Smalltalk language. This prototype is
intended to be a "proof of concept" system which would demonstrate the

feasibility of providing many of the desirable features described in
Section 2. In Section 4 we will evaluate the prototype in the light of these
requirements, and describe several enhancements which could improve its

performance.



-2-

I.0

PQ

CCa.

0

-41

.9 -m

W~~~~r~ -v-e'I

% 'Xp



3 -

2.0 BACKGROUND: THE NEED FOR NEW APPROACHES

Our effort to design and build an EW simulation environment is part of

an on-going project aimed at developing a new signal processor for ESM
applications [I]. This new system architecture will employ a loosely coupled
network of multiprocessor computers (Figure 2), each of which will consist of
a filter subsystem and a number of single board computers with associated
memory (Figure 3). Incoming data will be divided into parallel streams by
microprocessor controlled hardware filters. These filter subsystems will be
implemented using highly parallel VLSI modules; filtered data will be stored
in multiple circular buffers which are directly accessible by the single board
computers at a high level. The single board computers will be run in a

tightly coupled fashion under a message-passing operating system. Signal
processing algorithms and control software will be implemented in a highly

modular, task-oriented style. An integrated testbed system is being developed
to implement and investigate this design with a combination of "breadboards"
and commercially available components. This testbed will include a vertically
integrated development and test environment which will provide software

support for program generation, simulation, and performance monitoring.

The simulation component of this development environment is intended to
be used for both design (during system development) and analysis (for
evaluating the effectiveness of the new equipment). When planning this
activity, it became clear that to address these requirements a flexible system
with rapid response time was needed. During this project we anticipate that a
number of increasingly complex versions of the basic system design will be

developed. Consequently, in order to adequately support development work, the
simulation environment would have to concurrently support a number of models
constructed with varying levels of detail; this support ideally would include
a version management capability which makes the underlying relationships
between the models explicit. To make the best use of available manpower we
also wanted an articulate system with a natural user interface. It was our
philosophy that the simulation had to be accessible by all project engineers,
not just a few "simulation gurus". Above all, we needed to produce believable

results which could be validated.

2.1 Why Do Conventional Simulations Lack Credibility?

Very early in the project we decided to develop a new software package
specifically designed for simulating EW systems rather than try to adapt an
existing simulation to our application. The two related issues of credibility

and validity were our main considerations when making this decision. As
scientists and engineers, we build models of systems as an aid to
understanding their function. We need models in order to reason about these
systems. By subjecting our models to test and scrutiny, we are able to refine
and improve them; in other words, we learn. Simulations enter the picture
because a detailed model of a complex device (such as an EW system) is
frequently too involved for mental manipulation. We require a computational
aid, such as a computer, to fully exploit and exercise the model.

V % W% % % -

~ ~ P* ~. ~ - 5- %



Receiver
"I Digitizer

;,Node 1 Node 2 Node 3

'Ii,

.11

iDispay External
Subsystem Communications

-, Port

NodE 1: Mul c System ArchitectIurej

o.



Signal Bus

Digital Preprocessor

" Hardware Filters

" Circular Buffers
" Filter Controller

Memory

LAN Development
Controller System

FIGURE 3: Single Node Configuration

%FIGURE 
3: ,%



a' -6-

Unfortunately, traditional simulation approaches do not support the

scientific method (i.e. the "learning by modelling" paradigm) very well. In
the typical case the EW engineering group probably includes a team of Fortran

or Pascal programmers whose only function is to implement models. Moreover,
the EW engineer usually must wait weeks, or even months, to see the results

(which almost always are not what he expected!). Consequently, the results
derived from the simulation frequently come much to late to have any impact on

decision makers. The whole process seems to lack credibility: given a
conflict between the simulated results and the engineer's own intuition,
intuition almost always wins.

* . Credibility problems are also closely related to the absence of any

systematic methodology for validating the results of simulations. Currently,
the usual approach to validation involves exercising the software until a

consensus has formed among the users that most of the serious deficiencies
have been detected and corrected. At this point, performance tests, designed

on an ad hoc basis (often based on real test data if it is available), will be
carried out to gain increased confidence in the quality of the model. Our own
experience leads us to conclude that considerable effort is required to

achieve even a moderate level of credibility by this route. Moreover, in many
cases the system under development has itself already been built and tested
before the simulation has been satisfactorily validated. One is often led to
wonder what benefit (if any!) the simulation provided the system developers.

2.2 Why is Validation so Time-Intensive?

We believe that expert review, rather than pseudo-formalized ad hoc

testing by the simulation designers, is the only truly viable way to establish
the validity of a simulation model. Indeed, we would suggest that

understanding and credibility are synonymous. For a complex simulation, true
understanding can be very costly indeed!

Unfortunately, it is doubtful that many external reviewers would be
willing to commit the large amounts of time needed to achieve the deep
understanding of underlying models which is required to effectively validate a

large-scale traditional simulation. We have become convinced that the
time-intensive nature of validation is a major contributor to the credibility

problems experienced by simulations in our field of Electronic Warfare.

Why does validation tend to be such a laborious process? We have
identified three factors which we feel are especially significant:

(1) There is no framework for applying tests of validity. In other
words, we probably need to have an explicit model of the modelling

process itself. Remember that we learn about any system (including

a simulation) by building models, by subjecting our models to
analytical and empirical study and test, and by modifying our
models based on the results of these tests. Consequently,

validation tests are really only likely to be meaningful in the

hands of an intelligent reviewer with expert knowledge of both the

simulation and of the system being simulated. Most so-called tests
of validity are very dependent on the context of the simulation,

and hence difficult to generalize. We are currently lacking the
kind of "software testbed" structure which would make these tests

useful in a broader context.

N .. .. -.
'J* W" 

.
-- - - - - - - - - - - - - - - - - -



. ~ -~ kL ~ - .- 7 -

-7-

(2) Validation often prcduces inconclusive or ambiguous results. The
ambiguity may arise because the simulation was poorly designed,
because the wrong kind of performance data was collected, or
because we quite simply asked the wrong questions. Even if a
simulation does "pass" all of the tests that one can conceive of

(or afford!), there is still no guarantee that it is correct; one
only knows that one has failed to prove it was incorrect.
Moreover, if the simulation fails one or more of the validation
tests, it may not be possible to find a cost-effective way to

correct it.

(3) There are no software tools designed specifically to assist in the

process of validation. The usual software development tools (e.g.
editors, compilers, debuggers) are designed to manipulate
programs; what we need are tools to represent and manipulate

models. It is difficult to see how such tools could be "added on"
to an existing simulation constructed along traditional lines.
Consequently, we are led to conclude that simulations must be

designed to be more open and articulate systems, capable of
intelligent interaction with both designers and reviewers. This
will require fundamental changes in the way that simulations are

developed and maintained.

Currently, simulations are semi-autonomous entities which do not
interact much with software development programs. We envisage a more
integrated system of software development and support tools which will create
a kind of "permanent environment" within which the simulation will be housed.

Such environments would not only enhance the productivity of the simulation
developer, it would also allow new users to more quickly achieve a level of
understanding sufficient to engender confidence in the models. Moreover, such

simulation support environments could also provide part of the validation
framework we are lacking with current technology.

2.3 Requirements for an EW Simulation Environment

What features would we like to see in an EW programming environment?
We will assume that any such environment should include a rich set of program

development tools. We will consequently be more concerned with identifying
software tools which would expedite the modelling process, provide a framework
for simulation design, or assist in the validation of the finished product.
These remarks will be drawn largely from our own experience. In most cases,

they stem the hindsight that "if I had this tool, that job would have been
easier". What follows is a compendium of such observations organized into
related groups.

P8 _"P - . "



An EW programing environment should encourage a style of modelling

which leads to a direct and meaningful correspondence between the
~subcomponents of a model and those of the real world system it represents.
~This requires a close and obvious relationship between the granularity of a

simulation and the level of detail with which it models natural phenomena.
Part of our motivation for wanting to build simulations within a programming

environment is a desire to use the simulation itself as a vehicle for

communicating with our peers, that is, as a way of storing and retrieving
information about EW models. People tend to organize such information in an

hierarchical fashion. It seems reasonable that EW simulations should take the

same approach.

Indigenous support should be provided for the validation/verification
process. For example, some form of automatic code generation is needed. Not
only would it help to create more reliable code by eliminating the source of
most programming errors (i.e. the progranmmer), it is also philosophically

consistent with our goal of making the simulation designer more efficient. We
envisage that the environment would ultimately include a library of "standard"
components. Most of the analysis routines provided with current simulations

are designed to analyze the behaviour of the system being simulated. We tend
to use side-effects of these routines to extract information about model
behaviour. EW programming environments should provide analysis routines

designed specifically to examine the structure of the model itself, and to
explain this structure to the user. One possibility would be to include an
expert system which could deduce whether new models were "plausible" using a

knowledge base containing "legal" ways to assemble the standard components in
the library. This inference system could then be used by both designers and

reviewers to find non-standard constructions.

The EW programming environment should include built-in event-logging
machinery. Software to compile and analyze event histories seems to be a
major component of most EW simulations, requiring considerable effort on the
part of the simulation designer. Technology limitations in most current EW

simulations mean that event-logging software must be "hard-coded" into
procedures (e.g. as subroutine calls). As we learn more about the system
being modelled, our perceptions change, with the result that simulation code

is continually being modified to include new event-logging procedures.
Finally, a point is reached when large new programs are required to
post-process the enormous amounts of data being generated. We believe that
more flexible monitoring capabilities should be provided, perhaps by including
an "event editor" which allows the user to interactively define the event
histories he wishes to record.

%
"V'? .N%'



-9-

2.3.2 Simulations Should be Easy to Build and Use

Domain experts (like EW engineers) must have direct contact with the
simulations which realize their models, without having to cope with the

overhead associated with traditional simulation methods. After all, the end
goal is not to create a simulation, but to gain an increased understanding of
the systems being designed, built, and tested. As has been pointed out, this

understanding is gained through model building. Simulations enter into the
picture because they are often the only way to interact with complex models
which do not have simple, closed form solutions. The EW analyst is now forced

to choose between good programming techniques, which are time-consuming and '
which for a complex model require a team of programmers to implement, and the
immediate feedback which comes from a simpler, "quick and dirty" approach with
"throw away" code. Unfortunately, the simple approach is often inadequate,

and the throw away code is hardly ever thrown away!

Consequently, an EW programming environment should be an open and
articulate system: it should respond to user queries about what it knows, and
be able to explain its own behaviour as much as possible. It should be able
to represent and display the information it contains within a number of
alternate views, each designed to interact with a particular class of
user/modeller using a familiar symbology. For example, descriptions of EW

receiver models might be accessible as either logic flow charts or as system

block diagrams, both generated automatically from the same computer code.
Programmers would be more comfortable with the flow charts or with the code
itself, while systems engineers would likely prefer the system block

diagrams. Notice that either representation is a "true" description of the
underlying model. (This is analogous to expressing the same concept in
different languages.) This capability to maintain a number of user-oriented
views is especially important if one wishes to draw experts from other related

areas into the modelling and validation process.

As much as possible, modellers should be freed from the necessity to

explicitly manage overhead. A large portion of most current EW simulations
seems to be caught up with managing overhead: the user interface, the
organization of procedural knowledge and data, event-logging and statistical
analysis of recorded events, etc. Standardizing user interfaces alone should -
result in considerable savings in time and energy. This can be accomplished

by assigning the responsibility for managing application specific behaviour to
the application module; in this type of architecture, the user interface is

concerned only with system-level behaviour. Built-in software configuration
control (sometimes referred to as "change management") is essential.
Individual "tailoring" of the environment to support specific applications can
then be encouraged, since the differences between the "standard" configuration

and that supported locally will always be automatically documented. This
approach permits us to be flexible in the face of new requirements while still
retaining the benefits of known standards.



-10- 1

2.3.3 Summary

In summary, an EW programming environment should:

i. support a direct and meaningful correspondence between a simulation
model and the real world;

2. provide explicit support for the validation/verification process;
3. provide built-in event logging and analysis without requiring

explicit code modification;
4. allow easy access to the simulation for non-programmer domain

experts;
5. be an open and articulate system, capable of supporting multiple

viewpoints;
6. relieve the user of responsibility for explictly managing overhead

by supporting standard interfaces and automatic software version
control.

While unrealized as yet, we believe that such a system is well within
the current state-of-the-art in programming environments. It has seemed to us
for some time that the nub of the credibility problem is that one is forced to
grasp the mechanics of a simulation before one can comprehend the underlying
models. This is unfortunate, because EW specialists already have a basic
comprehension of the fundamentals of their discipline; understanding how the
simulation works is almost always the most time-consuming part of the
validation exercise. Consequently, we were led to ask whether it might be
possible to design a simulation which enforced a separation between the EW
model and the purely mechanical aspects of the simulation, without imposing a
rigid structure on the designer. The concept of creating an object-oriented
EW programming environment, as discussed in the next section, grew from this
requirement. We believe that the development and use of such environments
will lead in the long term to better simulations, improved validation, and,
ultimately, to real credibility for EW simulations.

3.0 OBJECT-ORIENTED EW MODELLING

Although there are undoubtedly a number of ways to implement an EW
simulation environment which addresses the requirements laid out above, we
advocate an object-oriented approach. An object is a software construct which
specifies in a single logical unit both data and all of the procedures which
can manipulate that data. An object can only be accessed by sending it a
message (executing a procedure); the external view of an object is its
protocol, i.e. the set of messages to which it can respond. This
encapsulation is typical of object-oriented systems, and is the underlying
reason for the modularity and the robust response to change which
object-oriented systems provide. Also intrinsic to most object-oriented
systems is the notion of class. A class is, in effect, a template for a
particular type of object. Classes are organized hierarchically in a
tree-like database. Data structures and message protocols are inherited from
higher level classes unless they are explicitly changed.

NN



Although the SIMULA programming language was the precursor of
object-oriented programming, it was the Smalltalk project at the Xerox Palo 

Alto Research Center (PARC) which, directly or indirectly, brought most of" -_

these concepts to maturity. The expressive power of the

object/message-passing paradigm, as demonstrated by the Smalltalk-80

implementation [2], has been both persuasive and pervasive. Objects are now
supported in one form or another in a number of programming languages and

applications. However, Smalltalk is still the only programming language to

use the object as its basic building block. In every other case, objects are

built from other, more primitive, data types. Consequently, we believe that

Smalltalk is the best base on which to build an object-oriented application.
With this in mind, we are developing an extension of Smalltalk (called Actra)
designed to run concurrently on the multiprocessor testbed described in
section 2.0 [1].

The object-oriented approach provides a framework which supports a

direct and meaningful correspondence between our models and the real systems
we are modelling. Consequently, we have an expressive, natural way to

represent the inherent structure in the EW problem. By using classes and

inheritance we can deal more effectively with the complexity of EW knowledge

by representing it in a layered fashion. It will be recalled that one of our

objectives was to eliminate the need for routine programming. Since

object-oriented "programming" tends to consist of modifying existing classes

to create new subclasses, it represents an important interim step towards this
goal. In fact, when simulating with objects, most of the effort is devoted to

identifying and defining the new classes required to realize the abstract op,
model.

A number of earlier EW simulation systems have either directly or

indirectly influenced our design. Many of our ideas were formed as a

consequence of working for several years with the U.S. Naval Research
Laboratory's STEWS (Simulation of Total Electronic Warfare Suites) package.

We have also had the benefit of a number of other examples of object-oriented
simulations to draw on, especially the system described in [6] by Cunningham
et. al., and ROSS [3] and SWIRL [4], which model tactical air engagements and .

have a significant EW component.

3.1 The Smalltalk Programming Language

Since the Smalltalk language is not yet widely used, we will include a

brief introduction to the language and its accompanying programming
environment. A complete description of Smalltalk is given in [2]. Smalltalk
is usually run on a high-performance workstation equipped for high resolution

bit-mapped graphics and a mouse input device. Personal computer

implementations have onty recently been available. The Smalltalk programming

environment supports a menu-driven, multiple window format reminiscent of the

Apple Macintosh (which is not surprising, since the Macintosh interface

borrowed philosophically from the Smalltalk user interface). A typiral
Smalltalk display screen is shown in Figure 4.

% % 4Q V



-12-

Pt0

NL

Pt.

00

D co

C C I r_

-o o @1 0
0 ad cu

tel CH L C) %- c c
I LCJo'- L C co

00 D-
0 0 0  0 3 c-

0 C

itn
V'N

cu C 4-3

0 70

-,

I' CL C 1@

0 i
CitX

9.kn4
cut Ed 0 0

0-a

cu w0 Xl
U'..J n

03030 O..AO O 0I I'l +' k
p22 L

- ~ ~ ~ ~ L 0 0. J-s C-'.~j . c. .p; zirj -70 w~ucrrw x-
U \%. al~ a- C40 . 0: <S -~ -0 4-~, ~



-13-

Smalltalk has a completely integrated programming environment; there is

no distinction maintained between the "language" and an "operating system".

The Smalltalk system essentially consists of a large collection of objects.

Viewed heuristically, each object has two main parts: its data structure (i.e.
how it is represented and stored in the computer), and its "method

dictionary". The method dictionary is a list of all the procedures (or
"methods") the object knows about; these methods are indexed by a "selector".

All computation in Smalltalk takes place as the result of message-passing

between objects. A message usually consists of a receiver (i.e. the object to
which the message is addressed), a selector (the index into the receiver's

method dictionary), and, optionally, arguments to the selector.

To illustrate these ideas, let's consider a simple example. A Point

object is stored as an array of two integers; points in Smalltalk are written

as

x-coordinate@y-coordinate

e.g., 10@10, 23@5. One of the procedures associated with the class Point is

point addition; its selector is "+", and it expects one argument, another

Point. To add two points, we send the message "10@10 + 23@5". The receiver,

10@10, looks up "+" in its method dictionary, and finds a procedure which, in
effect, says "take the argument (23@5) of this message and add it to yourself".

Smalltalk objects have associated with them the notion of class. A

class is a set of objects with similar attributes and behaviours. Any

specific member of a class is referred to as an "instance" of that class. In

our example, Point is a class, while 10@10 and 23@5 are instances of the class

Point. The class is the reference for data structures and method dictionaries;
the instance stores the actual values which define a member of the class.

Smalltalk supports inheritance; that is, classes can inherit data structures

and procedures from parent classes, usually referred to as "superclasses". The
child class, or "subclass", can add new data structures. It can also add new
procedures or modify those of its superclass. Inheritance is a powerful
mechanism for sharing code; without it the overhead associated with

object-oriented programming would be prohibitive.

The Smalltalk programming environment, then, is simply a large
collection of useful classes: Numbers, Points, Views ("windows"), Menus, and

so forth. One of the most useful features provided by the environment is the e

System Browser (which is, of course, just another object). The System Browser
is the central window shown in Figure 4; it is divided into four small "list
views" in its upper half, together with a "code view" in the lower half. The

System Browser is a kind of database management system which provides access
to all the objects in the environment. Smalltalk classes are organized into
related groups called "categories". These categories are shown in the
Browser's upper left list view. By moving the mouse, one can scroll through
the categories and select one. In Figure 4, the "Graphics-Primitives"

category has been selected. This is indicated by dark high-lighting around
the selection.

.%

%~----a % . a, %, %, a, %,. % %, %, %. %,a~~ ,.



Nw-.6 -% - - - - - - - - -- F-4-& -V--V- - -- -----F J:-

-14

The list view to the right of the category view shows all of the
classes in the selected category. In Figure 4, we see that one of the
Graphics-Primitives classes is Point, which has also been selected. Just as

classes are grouped into categories, so too are the methods associated with a
particular class. In the third list view (going fiom left to right) we see
the message categories, or protocols, associated with the class Point. The
"arithmetic" protocol has been selected, and a list of the selectors in this
group appears in the right-most list view. We see that all of the usual
arithmetic operations which make sense when applied to points are present. In

particular, the "+" operation has been selected, and the code which defines
the "+" method is shown in the code view (i.e. the bottom half of the Browser).

The Browser can be used not only to view existing objects like Point,

but to create new classes and messages as well. The code view portion of the
Browser is a complete text editor. New code written with the Browser can be
automatically added to the environment by selecting the appropriate menu
item. Smalltalk menus are "pop-up" menus, i.e., they appear on the display

screen at the current cursor position. We will see more examples of the use
of menus to build applications later. For now the key points to keep in mind

are:

(I) objects consist of data and procedure combined;
(2) objects are organized into hierarchical classes;

(3) using the Browser we can easily create new classes and messages.

3.2 An Overview of the Simulation Architecture

Smalltalk programming consists essentially of creating new classes and
modifying existing ones. Consequently, in order to implement an EW simulation

environment in Smalltalk, it was necessary to identify and define the
collection of new objects which together comprised the simulation system. As
illustrated in Figure 5, these new classes divide naturally into two broad

categories: those used to implement various aspects of an EV. simulation, and
those used to construct the user interface.

3.2.1 The Environment Model

Most EW simulations are concerned with modelling the interactions
between electronic systems and the so-called "electromagnetic environment"

generated by such RF emitters as radars, jammers, and so forth. The

simulation may be designed to investigate large-scale effects (e.g. how an ESM
receiver responds to a large number of radars), small-scale effects (e.g.
interactions between a missile seeker radar and a defensive jamming system),

or both. Our current interests are restricted to many-on-one ESM receiver
simulations (i.e. large-scale), but the methodology discussed here is equally
applicable to the small-scale case.

4

Z .

eel



*%

Scenario Object
-Platforms
-Emitters
*EW Systems

Scenario Manager

Receiver Model

A
control J I Pulse Data
Messages

EW Signal Processor Model

EW Simulation

EW Scenario Actor Monitor
Browser

User EW Receiver Processor

Interface Browser Monitor

FIGURIE 5: Structure of Object-Ori ented Modelling Svstem

" ' =- = " ° --" " , " ' ' ' ' ', ." .' p , ,P r. # =- .- . -, -, =. --n - - - " % % .



70V. V~ -T -.-1 V 7~ 7-7

-16-

The electromagnetic environment is described by a Scenario object,

i.e., an instance of class Scenario. As shown in Figure 6, Scenarios are
*w organized around Maps. Each Map describes an area within which the objects in

a particular Scenario move. A Map stores its origin, scale, and units, as
well as a name and comment. In addition, each Map has a form containing a
bitmap used to display the Map on the screen. Each Map contains a list of

Scenarios defined on that Map. A Scenario has associated with it a name, a
time interval over which it takes place, and a comment. Most objects in the

simulation environment have a comment "slot" which the simulation designer can
use to document his design decisions. For example, a Scenario comment may
include a written overview of the scenario, describing the general situation
and the objectives of the opposing commanders.

A Scenario includes a list of Platform objects. As shown in Figure 6,

each Platform has a name, an indication of type (e.g. Surface, Air, etc.), and
a disposition (e.g. Friendly, Hostile, Neutral). In order to be able to
display the platform's location on the Scenario's map, it has an icon ( a

small graphical symbol which can be used to represent the platform). Each
Platform also has a trajectory, which is essentially a list of times and

positions which define the Platform's motion during a simulation. Finally, the

Platform has a list of Emitter objects. As indicated in Figure 6, each
Emitter object has a number of state variables which define its dynamic

behaviour. An observer located anywhere on the scenario's map can ask an
Emitter to use this information to compute the signal power which the observer
will receive from the Emitter at a particular point in time.

A instance of a Scenario can be thought of as a database containing

information about the electromagnetic environment. Heuristically one tends to
think of emitters as being a collection of (nearly) independent objects acting
in parallel, suggesting that emitters should be modelled by a number of

asynchronous processes Unfortunately, this generates more computational
overhead than can be easily managed with our current implementation.

Consequently, we have created an abstract object called a Scenario Manager,
whose function is to provide an interface between the emitters in a Scenario

and any EW equipment models in the simulation (see Figure 5).

We will usually refer to objects such as the Scenario Manager as

"actors". An actor may be thought of as a process which has a list of tasks

to perform (its "script"); alternatively, one may think of an actor as a

dynamic object which is encapsulated within its own process. The other
principal actors in the current implementation of the simulation environment
are Receivers, Data Buses, and Processors. In general, actors can be
decomposed into a number of "lower level" objects. These lower level objects
may communicate directly with each other; however, to send messages to objects

outside the actor's domain of definition, they must communicate via the
actor. This discipline leads to "modularity in the large" which complements

the object-oriented "modularity in the small" provided by Smalltalk.

% % % . % % % .
OF.J



- 17 -

Name
Origin

Map Scale
Units
Form
Comment

S°enar'°i ,"[--b

Scenao N a men

Start/End Times
Comment

,

Name

Type/Disposit ion
P la tfO rm  Trajectory

Icon
C ommen t

Type

CM oide eI

Emitt Mode Schedule

kntenna GainZ
Peak Power
Comment

am %.J%
I'[,[ Emitt:S earo Modeba~ Str cedul

'S""

% '''ntenna Z . -Z '%'' %' , - Gaino,, .% '.5 ,, . ,., 5

• " ".'......'.'.'._....,.,. '." '.'......'.'.'. .. --,,:,.-.-_'.,,.% .; Peak" Power;__' ....'-.,...



- 18-

3.2.2 The ESM System Model

A detailed description of the Receiver and Processor actors is shown in
Figure 7. Receiver objects live on one of the platforms in a Scenario (the
Associated Platform); they receive pulse data from a Scenario Manager. Signal
processing within a Receiver is modelled by a Signal Flow Net object: when the
Receiver receives a Pulse object from a Scenario Manager, it sends a " process
this pulse" message to the Signal Flow Net. A Pulse object is essentially a
list of parameter values, specifying the RF (radio frequency), TOA (time of
arrival), PW (pulse width), DOA (direction of arrival), PA (pulse amplitude),

and source emitter. The Signal Flow Net is a network of abstract devices:
Filters, Detectors, Transformers, and Bus Terminators. By interconnecting a
number of these abstract devices we can quickly build functional models of
most receivers. Although the current implementation does not model stochastic
effects, these could be added with relatively minor modifications to the
overall design.

A Filter interrogates the Pulse to see if a particular parameter value
is within an acceptance gate, and, if so, it passes the Pulse on to the next
device in the net. Since Filters can be defined on any parameter, we can
model not only RF filters but also such components as directional antennas and
threshold detectors using Filters. A Detector measures a parameter value and
performs some action (e.g. record the value, feedback to another device,
etc). A Transformer performs a linear transformation on a particular
parameter value, allowing us to model such components as mixers and
amplifiers. Bus Terminators provide a standard interface to a Data Bus
object. As indicated in Figure 7, our system can simulate a computer which
employs a number of processors running asynchronously. Our computational
model is based loosely on the Harmony operating system. Harmony is a realtime
operating systems kernel developed by Gentleman [7][8]; it belongs to a
family of widely respected message-passing operating systems which are
beginning to see broad use in the industrial and academic communities.

Harmony is a shared-memory multiprocessor real-time kernel. Each
processor contains a copy of the Harmony kernel and executes a set of tasks
which reside in its address space. Each processor is capable of interrupting
any other processor. Any task can send a message to any other task in the same
or a different processor. The location of the task does not change the
application program. Since both local and remote tasks are referenced in the
same way, tasks can be moved to different or more processors without modifying
the application software. The tasks which are executed in a given processor
are determined at configuration time. Any number of instances of a task can
be created and destroyed at run time. Tasks execute with a fixed stack space,
but may request and release working memory in the processor where they execute.

-.

% , V

% '.,
% ,



-19-

Receiver

-Associated Platform
-Scenario Manager
-Signal Flow Net

-Filters
4 -Detectors

-Trans formners
-Bus Terminators

a. Bus Terminators

_________ __________Bus Adaotors

V'

Prcssr

-Nub-

FIGUREe 7:RcevrPrcssrSrutr

-TskQiee

-Cret esg
-Msag uee

FIUE7 eevrPrcso tutr

ft N.



- 20 -

The bulk of intertask communication is accomplished with three message
passing primitives: send, receive, and reply. The "send" message causes the
executing task to block or suspend until it receives a reply, whereas

• "receive" causes the executing task to become blocked until a corresponding

request has been received. This simple and straightforward protocol is
augmented by two special forms which implement a non-blocking receive and
interrupts. Additional primitives for creating and terminating tasks and

supporting stream-oriented input/output are also provided.

The main objects used to simulate multiprocessor computers in our

simulation package are Data Buses, Processors, Tasks, and Messages. A Data
Bus object has a collection of Bus Terminators and Bus Adaptors. Its function
is, quite simply, to model the movement of data on the bus according to some

*bus arbitration protocol. Each Processor object has a unique identifying
number,a boot block which contains initialization information, priority queues

for tasks and messages, and pointers to the currently executing task and the
last received message. Message objects have state which records the sender and

receiver of the message, the times sent and received, a message type symbol,
and the body of the message (which can, in principal, be any object). Task

objects are independent processes which communicate and synchronize with
message-passing based on the Harmony model. We model a particular task in a
Harmony-like system by creating subclasses of Task which include the

appropriate protocol for the task being modelled.

3.2.3 Simulation Time Management

The execution of a particular simulation is driven entirely by message
passing between the actor objects; message passing between actors follows the

same Harmony-like protocols used for Tasks. The processes associated with the
various actor objects are first initialized. Each actor object has a local

clock; in addition, there is a global clock kept for the system as a whole.

Time management is an important issue in an actor based simulation. When an
actor receives a message from another actor, the local clocks of the sender
and the receiver are synchronized. However, we have to guard against
creating paradoxical situations.

For example, consider three actor objects A, B, and C, and suppose
local Time is a message which returns an actor's current clock value. Suppose

further that

A local Time < B local Time C local Time

i.e., actor A's local time is in the past relative to actor B's local clock,
and actor B's time is in the past relative to actor C's. Since the simulation
is running asynchronously, it can happen that A receives a message from C,

updates its clock to match C's, and proceeds to act on the message.
Meanwhile, B sends a message to A, which A is not available to process because

it is busy working on a "future" message.

M
F~~~ -e ~ 'F'



- 21-
.5

."

Our solution to this problem is to maintain a global clock which is
defined to be the minimum time on the clocks of all actors currently blocked
on a "send" message. Message transactions are not initiated until the
sender's local clock matches the global clock, and are not completed until the
receiver's time equals or exceeds global time. This guarantees that an actor
blocked in "receive" loops will not unblock until there are no potential
senders in its "past", only receivers. Moreover, these receivers can only
become senders when they are unblocked, at which time their clocks will be p
updated past the current global time. Notice that only actors currently
engaged in a message transaction require synchronization. Otherwise, any side
effects resulting from the actor's processing are internal to itself, and
cannot affect any external objects in the rest of the system. Actors blocked
in "receive" loops will be unblocked as soon as a sender matches the global
clock.

We will illustrate how a typical simulation might proceed by
considering an example based on our ESM multiprocessor simulation. In the
current implementation, the simulation is initiated when tasks associated with
data acquisition send messages to the Receiver object requesting pulse data
over some time interval. The Receiver asks the Scenario Manager for any
pulses which would have been generated by emitters in the scenario during this
interval. Each of these pulses are processed by the Receiver, and any which
are accepted, i.e. would have been "intercepted and detected", are sent to the
requesting tasks via the Data Bus object. This is actually a somewhat
simplified overview of what actually takes place, since special hardware
features planned for new systems are also simulated. However, it serves to
provide a general idea as to how the objects in the simulation interact. In
the next section, we will discuss the user interface facilities provided to
support direct interaction between the simulation objects and the
designer/user.

3.3 An Overview of the User Interface

Many of the desirable features for an EW simulation environment which
were discussed in section 2.2 focused on the interface between the
designer/user and the simulation. It was suggested that the simulation should
be open and articulate, that it should employ standard interfaces and version
management, that event-logging and analysis should not require explicit code 0
modification, and that non-programmers should have easy access to the F

simulation. Our initial approach to addressing some of these requirements is
to try to explicitly separate some aspects of the user interface from the main
lody of the simulation, as indicated in Figure 5.

We envision the user interface as a collection of software tools which
are designed to interact with specific classes of simulation objects. These
tools are themselves objects, and hence can be easily modified (by creating
new subclasses) to support new requirements. Each of these objects have been
designed as independent elements following the object-oriented philosophy.
Hence the tool set can be expanded, and existing tools can be modified, with
little danger that unexpected interactions would render existing software
unusable.

% % %*I:'.~ ~ ~~ w %
5 . 1 * - ~



-22-

We are using two types of interface objects at the moment, Browsers and
Monitors. Both provide access to the state of simulation objects: browsers
support extensive off-line (i.e. while the simulation is not running)
interaction between the browsed object and the user, while monitors are used
during the running simulation to examine dynamically changing states of
simulation objects. Two browsers are currently planned: a Scenario Browser
which will provide an electromagnetic scenario generation and analysis

capability, and a Receiver Browser, which will provide a capability to create
EW receiver models directly from system block diagrams. A prototype of the

Scenario Browser has been implemented, and will be described in some detail
later in this section.

3.3.1 Monitors

Two different types of monitors have also been created. The Actor
Monitor is a kind of "generic" interface designed to inspect the state of any
actor. Processor Monitors are a subclass designed specifically for inspecting
Processor objects. Each monitor creates an independent multi-paned window to

display information to the user; the layouts of the windows associated with
each monitor are illustrated in Figure 8. Actor Monitors show the name of the
actor, the time on the actor's local clock (this pane can also show the global

time), and the message state (i.e. Send, Receive, Reply). The "Catch/Throw"
pane is a switch: in "Catch" mode all messages to and from the actor are
intercepted and displayed in the "Message Inspector" pane. Outgoing messages

can be edited by the user before being forwarded. In "Throw" mode message
interception is disabled. The "Message Log" pane is a log of the most recent
message traffic. It can be reviewed periodically by the user and, if desired,

written to a file.

As shown in Figure 8, Processor Monitors have additional display panes

which provide information about the internal state of the processor.

Specifically, the "Active Task" pane indicates either the name of the task
currently being "executed" or "Inactive" if no task is executing. The
"Priority Queue" pane is a list of tasks ordered by priority which are waiting
for the processor. The "Suspended Tasks" pane is a list of tasks which are
blocked because they are waiting to complete a message transaction. The "Task
Message Queue" is a list of messages which have been received by the Processor

but not delivered (usually because the Task to which the message is addressed
has not yet asked to receive it). Any task or message can itself be inspected
by pointing to its name with the mouse and selecting the "inspect" option from

a menu.

d-
p%



-23-

NAME

LOCAL TIME CATCH/THROW MESSAGE STATE

MESSAGE INSPECTOR

MESSAGE LOG

ACTOR MONITOR

NAMEZ

PRIORITY SUSPENDED TASK
QUEUE TASKS MESSAGE

QUEUE

ACTIVE TASK j

LOCAL TIME CATCH/THROW MESSAGE STATE

MESSAGE INSPECTOR

MESSAGE LOG

'.,

PROCESSOR MONITOR

FIGURE 8: Layout of Monitor Displays



- 24- %

3.3.2 Browsers I

The function of the Browsers is best described by following through an
illustrated example which shows how a user would create an electromagnetic
scenario using the Scenario Browser. Figure 9 shows the layout of the

Scenario Browser. The Browser is organized around maps (upper left pane).
Associated with each map is a set of scenarios (shown to the left of the map -

pane). Initially, the Browser indicates that the "Maritimes" map has been
selected, and that it has one scenario called "Trials". The map itself is
displayed in the right half of the Browser. The map pane supports both scroll
and zoom operations, with the length and position of the scroll bars
indicating the portion of the map being displayed. When the mouse indicator
is moved into the map pane, it is displayed as a crosshair. As the crosshair
is moved around on the map, the current position coordinates are displayed in
the small pane at the lower left. In the figure, the coordinates "261 nmi @
214 nmi" are indicated.

In Figure 10, the "Trials" scenario has been selected. The platform
pane (directly below the map pane) shows a list of the platforms which appear
in the scenario. Associated with each platform is an icon which shows the

platform's position on the map. A platform may be selected by clicking the
mouse button on either the platform name or the icon. In either case, both
the name and the icon are highlighted, as shown in the figure (the platform
Vancouver has been selected). When a platform is selected, any radars or EW
systems on that platform are shown in the equipment pane (right of the

platform pane). For example, in Figure 10, the only equipment on the platform
Vancouver is the CANEWS ESM system.

Associated with each pane in the Browser are one or more menus which
provide processing options for that pane. Menu items are selected by

depressing the middle button, moving the highlight to the desired item, and
releasing the button. Figure 11 illustrates a platform menu. The "add

platform" option has been selected. Other options allow the user to set
default units for speed, altitude, and depth, read a platform from a file, and Sq

"inspect" existing platforms. The purpose of the inspect selection will be
described shortly with a specific example.

The Scenario Browser maintains a database of known platform and emitter
types. Selecting "add platform" initiates a series of prompts aimed at

establishing the name and type of the new platform, as shown in Figures 12-15.
Using the platform type information stored in the database, a new instance of
that platform is created and added to the scenario (Figure 16). The user is
prompted for the initial position of the platform, and the basic platform
parameters are displayed in a pop-up view. We next specify the course and
speed for the new platform. As shown in Figure 17, menu options are provided
to set the speed and altitude of the new platform, and to set a new position.
Selecting the "set speed" option produces a "limited choice" menu, as shown in

Figure 18. The range of possible speeds for this platform type is cxtracted
from the database, and a sliding scale indicator is used to select a value in

this range (fictitious values have been used in all examples).

% % %I

00 Ir If F10 9. d



* I

C\-J

CL '

CL-'5

CYS

S.%

e7 % 0%%



0**6

.r.r

-cc

-St

S. .K ....... ..

0 0

E U))

UC.)

00

- - C

o oL-z J c
(X) I

C- J F
(20-

*Lfli EcO

% %i % %



.$ ~ ' --~. - . . . . . . . . . . . . . .....

X~a: 
It

uj,

kn.
2 .

- CU

0 > 0
z aa

0 0
0 1- 0 L) cu C

0 0

0 *. Fp P 0 P .
%- % % %%



-28-

4.

- - - - - - - - - -

%

lop

xX'

L4,

(. 4'.

4

. i.

.44
CL vi F

E cV

c cu c
li. C) 0.

CL kn
6 o c - 0 1CU V

LLii

%"



- ........- .

.. .......

S.. co

0

ru-31

-J-I
% % . ** I . N z

01 We rR. l r ,"j, . -. , . - .
A . ... .. . - PN-I



~- ~..v-.- rr rw. . .30

- 3() -

........... F7--77

.. .......

K.J

Ia~t 7;.'o

11 , CD.~

>.>

PAz

0

W - -yE0c

LOL

% %2%



, v.

-4-b

%.cu.

:3 c

CL %I.-, &Io )0 c

6100C 0 ( %Yr

> 0>3

cc,,

IR . . . . . .
P % , %

% Z3t%



-32-

I ;.. .. . .... ........-.

S-7)

~t~ E

DC) o

0 c

CUC

... .... ..

I cu

OJIJ

aI EJIJ

cu cu ' D I-

E c

C'~

% C E.. . C > c



-33-

a~~~~~~~~~~~~~~C - .-----...--.---- v 
- -

:3K.

L) 1.

L) L

WIo

WI.

-V 0 0 
-u

0 c~o

a, .x * ''/ 0

CC

.00

e. CU I

~~0 > CJ0 .
-

4--'

0F 0 ~ 0 Q)

WV~~~~O >''~ .A* S



L -34-

C

-e

- 0

0

I

'Cl

C.~

4,1

-r-

CUU

LIL

aL ap ~ ~

Ii

I C



r* T... 7777" -7-P- 
- T.

,.

- 35 -

The Scenario Browser displays a clock pane near the lower left corner
of the Browser. The user adjusts the clock by clicking on the "buttons" below
and to the sides of the digital readout. The "S" and "E" buttons set the
clock to the "Start" and "End" times; the "', ",>", and ">," buttons move
the current time forward by seconds, minutes, and hours, respectively.
Similarly, the "<", "-<", and "--" buttons move time backward. When the

clock is changed, all platform icons in the scenario move to the map position
they would occupy at the new time. For example, holding down the left mouse
button after selecting one of the clock buttons results in an animation of the
scenario.

Course information is recorded as a set of times and positions. As
mentioned, the initial position and time are generated when the platform is
created. New course information is added by selecting the "position" menu
option in the map pane. The next position is then specified by moving the
platform icon to a new point on the map. After the icon has been moved, the
Browser automatically computes the elapsed time required for the platform to
move to the new position (using the platform speed), and updates the clock.
The positions of all other platforms are adjusted to reflect the new time
(Figure 19). Selecting the "display course" menu item causes the course of
the platform over the entire simulation game to be displayed on the map
(Figure 20).

To add emitters to a platform in the scenario, the user first selects
the platform. He then moves the cursor to the equipment pane and selects the
"add emitter" menu option (Figure 21). This results in a pop-up menu showing
a list of the emitter types associated with this platform (Figure 22). After
the new emitter is created, its entry is added to the equipment list for the
selected platform (Figure 23).

Emitter objects are represented as a list of emitter modes. For each
emitter mode, the Scenario Browser's platform/emitter database provides ranges
ot acceptable values for emitter parameters. When the emitter mode is
created, a random value in the acceptable range is selected. In order to
change this value, the user selects the "inspect modes" option in the
equipment pane (Figure 24).

Inspectors are standard Smalltalk objects designed to allow the current 0
state of an arbitrary object to be examined by the user. A default Inspector
is provided in the Smalltalk system. It is also possible to write Inspectors
which have been customized to examine particular kinds of objects more
effectively. As can be seen in Figure 25, an Inspector window consists of two
panes: a list of the object's state variables on the left, and a text pane
(which can be edited) on the right. Selecting one of the items in the list
causes the current value of the selected state variable to be displayed on the
text pane. For example, in the figure the mode's "pri" has been selected, and
the initial pri value chosen by the Browser is displayed in the text pane.

0

J. . %. *.



-36-

C13

.. .. ......

LO(D 00

-
*. .i

c 0)

CU.

Liii

.1E I

~cv~ ~iLOV'"



- 37-

.s.

%5

-- (, c

1,5 co....

o-' .531

N .. .. . .. .

a- E

L- c

CO~ 0)c~

o\cJ :3
fo CO) -% >L

'a

oi4tAt-, e*

or2
%- % '. %o0 *--- r 0.

4-J '-' c



- r N 7 -7 -77,77-7 -77.7-7 7 - 777 77.

-38- ,

................................ .....................

CU CD
ap E c

c -E E

D c

CU I D j I a'.

cu L)
3 vl C C

w ui u 3:

L).M

0 0 >

co.' , 0 . I I

Q- cw-~ >5.

lo



' %

1 -K"~ jA

e- p

L'-I

cu CLw

IsA

>

Jq%

- I -6- .

I ;NM L L *



Li.

E u)) %
c .2-3 I

al D 4-

J..

0 >-

0 L

0o CO,

UoLU

.1 - 1 .1 -l J I I
op,' Z, f".'P p-

I?~ a k- el fVs .' .%o



a .

%.

co.

0 0

a-i-s .! -L I E 0 c "

c 0 16- L. -L

I 
C 

'-

tio o

to- cc) -

%- a- Cy c

< co

_ _ _ _ _ _ _%

% kk



W"~*. ~* . .-. . * .

kT24

dD

QK.

clic

CF)

cu c

cu C E

Lu I=:: C N o

0 E 0%

M ~ 0  0 L)0

C) I I
Cdi

r r * ~ ~ ~ ~ id. E 0 d~.~.....f. .'% %f/%. . . PP

I * c. % *~%



LC

>- L)- -

C) k,-.,4 G, -0 fj 4

al.

4..

4% .

knp

2 .w.

UP ' CL

0 0T @3

0 V) 0 0 -

L)- =1: 0 0 m C I

fu. OD - e

3: C E *:l:a):

% or L. W. o



C')

0ini

o c

(0 co

- 0

I 0.0

0~~ ______

M% . ...I...
...... ......

au 1: 10 0 o

Do o o

(o 0 

'D C



-'1 -.- -3--.~---% -. ~

SS

USS

% El -e

0 a-L

CL.

0 ClC

'o 00

N, CCiM:i~ I _ I
Lu 1 0

.I.~ *~~~'*&* ~ ~ V': ., ~* J' .'**, .. .. ~ -. ~-~ ,p V sN V~ %S~ ~.V\t



- - j - -~ ~ ~ - .- - - - . 7-W b - - ON -g * .

d
-46-

C-p

-E E

I I

CC4

,o.

o o -0

I C', .

*A ItIt- L



- b~e - - --. ' ' - <t7 .-

-47-

As shown in Figure 26, menu options are available in the Inspector
which allow the user to change the parameters of emitter modes. For example,
selecting the "set pri" option results in the limited choice menu shown in
Figure 27. Once again, the browser prompts the user to select a pri value
from within an acceptable range. Selecting the "edit modes schedule" option
in the equipment pane (Figure 28) results in a pop-up schedule view which
shows a time line for each mode of the emitter (Figure 29). These time lines
specify the operating mode being used during each time interval the emitter is
actually radiating. Simple mouse input is all that is required to change the
modes schedule.

3.4 Dimensional Analysis

Some of the most annoying and persistent problems encountered when
implementing simulations are the result of arithmetic operations which are
dimensionally inconsistent, e.g. trying to compute a distance by multiplying
speed measured in miles per hour and time measured in seconds. Indeed, many
experts counsel that dimensional analysis is a good "rule of thumb" check on
the validity of the mathematical formulae used in a simulation. Parameters
associated with Platforms and Emitters in a Scenario always explicitly display
their units of measurement. This is not cosmetic, but actually reflects the
fact that they are represented as Dimensioned Numbers which store both a
magnitude and units of measurement. Arithmetic operations performed on
Dimensioned Numbers check the units of measurement and generate an error when
dimensionally inconsistent operations are invoked. In this way, we can

0 implicitly perform dimensional analysis on every computation done during a
simulation. To simplify the user interface, protocol has been added to the
Smalltalk class Number to support English language-like creation of
Dimensioned Numbers.

Figures 30 and 31 show a short Smalltalk work session which
demonstrates the use of Dimensioned Numbers. We begin by typing

pl + 10 dBm.

This creates a Dimensioned Number object with power units. In the current
implementation, Dimensioned Numbers support a limited number of conversion,
comparison, and arithmetic operations (addition, subtraction, multiplication,
and division) directly. For more involved computations, a Dimensioned Number
can provide a scalar quantity scaled to the appropriate units on request. For
example, as shown in Figure 30, we can send pl the message "W printString"
("printString" generates a character string representing an object), which

returns the value in units of watts. Alternatively, we can just ask pl to
print itself, in which case it returns 10 dBm.



-48-

13-

co 0

'C-
1* I~-.N

cw

0
-C r-(

I ILAN

I cu -c Ira -

DL 
0 0~ E*-n

'r CU-CI

1~ 0 CL 0 -1

cu L. 0 06 J-
L t CJu . C 0 00 6A0 0

4-i~ L.0(0CJ ~ N

Tv . 4.. T- * q A N 0

nj CU cu a 0 M

CUC

c -1

cn

U) C 0

Q. Cl I-% 0000

A-~C .. * c ~ ~ Lo #A.%W.-



- 49 -

The next example in the figure illustrates how Dimensioned Numbers
implement dimensional analysis. We first create two power objects p1 and p2.
Notice that when we add pl and p2, the result is displayed with correct units
(the units of the first addend are used as the default). Similarly, when we
divide p2 by a scalar quantity ("p2/5.0") we retain the power units. However,
dividing pl by p2 results in a scalar (note that no units are printed), just
as it should. Moreover, computations which do not make sense from a
dimensional standpoint are trapped. In the next line, we create a Dimensioned
Number with frequency units, fl. When we multiply pl and fl, we obtain the
correct result. However, Figure 31 shows the result when we try to add fl and
pl. The system displays a "Notifier" window with the error message:
"Conversion not available".

If for some reason a user actually had wanted to add a Power and a
Frequency, the system doesn't really prevent this. By sending explicit access
messages (e.g. "pl W value", "fl MHz value") to the objects one can obtain
dimensionless quantities which can then be added. However, this requires an
explicit choice on the part of the user. The intent of this system is provide
the end-user with a flexible mechanism which eliminates errors due to
carelessness or bad design. It should also be remarked that there is
obviously a performance penalty imposed by the additional message sends
required to calculate with Dimensioned Numbers. However, real performance is
measured by the overall effectiveness of the simulation as a tool for
understanding the modelled system's behaviour. In our view, having
programmers spend weeks trying to locate an error caused by mismatched
dimensions, or having a simulation which is simply wrong, has a more
significant impact on performance.

4.0 REFLECTIONS ON LESSONS LEARNED AND THE WAY AHEAD

The prototype simulation environment described in the last section was
essentially designed and implemented over a six month period on a Tektronix
4404 Al workstation. About 8 man-months effort were required, divided roughly
into three man-months for design and five man-months for the partial
implementation of that design. Both the designer and the implementer had some
experience programming in Smalltalk but were by no measure Smalltalk experts,
so that at least some of their time was spent learning more about Smalltalk
and object-oriented programming methods. Despite this, the results have
surpassed our expectations. The functionality provided by the programming
environment compares favourably to other EW simulation systems which were
developed at significantly higher costs.

4.1 Assessment of the Prototype Simulation Environment

Since the prototype was developed to demonstrate that many of the
limitations of existing EW simulations could be remedied, it seems fair to
evaluate the extent to which it has addressed these concerns. Table 1 shows
the list of requirements developed in Section 2.2, and indicates on assessment
as to how well the prototype simulation environment meets the requirements.
The most obvious success is the degree to which object-oriented simulation
preserves the relationships which exist between modelled objects in the real
world. Since this was the main motivation behind adopting the object-oriented
approach, it was satisfying to see our hopes realized.

% % % %

% J"~~. J~ .5 
5

_ Z : ~ . "''.. 5\~



(UU

Q 50 0

UU
c 0)

cUP
c 0 E

.. e :.

0 

C-,

C C-
_ _ _4-

0 E (4.

I o 0 
~1 . __ _ L c 0 

0 i En
E- L-C(

1*c 0~~N1 Ld

0- E, U, E
0 cu a 0*

L L L C:c0 Yc 0 c aja,

it) oO -.zz -

VV1V 41-4-

ia. ca cc

io 0 0DaD, c ccc6 j
L) 0E L. L' EEE

CYC

W. 0, 4. 0a 0 L)T 0 L6 r 0.JLO c

C aq
40) 44JC

C 2 0. 0.f oc <2 c

~~~ c aaoD0(fua SI I

U ' U'~ >s Ubt X ->yc;z 4 r

0
z

0S
0

U.x

0 cu

cnc
0 o

(D C c
C. C cc Cu

0. 0 E

" E: >u 0u 0 .
a) %_ >D

>10 a) 1
,c0CD

2 C' .C) x V

.. 0 N

lo a)P h

-52 -

We have given the environment a "Fair" score in the three categories

which deal with software system architecture. However, the only fundamental

limitation here was manpower. When developing software systems with

object-oriented methods the preferred technique is to make extensive use of
existing classes, adding new objects to the system only when necessary. Cox

5[91 makes the analogy between this style of programming and the way
electronics engineers use integrated circuits to design ever larger

applications in their domain. At the moment, the only "object library"
-' available is that provided with the Smalltalk language. Applications which

can be built mainly from these existing objects can be implemented quickly.
Those which require a large number of new objects have a longer development
time, as effort must first be put into creating the new objects. The EW
simulation environment seems to fall somewhere between the two extremes. We
should note that follow-on work is already making use of some of the EW
objects created for this applications.

The use of browsers and multiple views in object-oriented systems is
fast becoming commonplace. With sufficient effort, it seems clear that the
goal of having an open, articulate system can be met. Smalltalk itself is an
excellent example of a programming environment which provides automatic
configuration management using an object called the System Organizer. Since
this is currently being used without modification, it does not distinguish
between code generated to implement a particular simulation and code developed
to support the simulation environment as a whole. This could be remedied by
creating a new Simulation Organizer class. Instances of this class could be
created to document each simulation.

The Monitor objects described in Section 3.2 are an indication of the
kind of event-logging capability we are seeking. While Monitors do not
include any analysis tools at the moment, these could easily be added. The
important point to note about Monitors is that they allow the user to inspect
and log interesting events associated with Actors without having to modify any
of the Actor's procedures. What is missing is some way of characterizing for
the system a notion of "interesting event" which would trigger an action such
as displaying a Notifier, collecting statistics, or logging an event on a
file. This probably requires a better formalism for describing the
interaction between objects in message-passing systems than currently exists.

We are still a long way from realizing our goal of providing easy

access for non-programmers. However, the potential advantages of the
object-oriented approach have been demonstrated through the example of the
Scenario Browser, which is a powerful tool easily accessible to
non-programmers. However, to achieve this ease of use required a significant
proportion of the total time and effort. Since the goal of the prototype
development was to prove concepts, it was not feasible to develop more than
one full-fledged user interface of this sort.

1%%

J.

- 53 - *,-.

Explicit support for validation and verification is the one category

where not much progress has been made. We rated the prototype as "Poor"

rather than "None" primarily because inheritance provides a capability to' "s

re-use code which limits programming errors, and the Smalltalk Browser makes
code more accessible and maintainable. As indicated in Section 2.2, we
suspect that a capability to build models rather than write programs is called

for. There are several Smalltalk applications designed for simulating simple
physical systems which indicate that such an approach is feasible; these

include ThingLab [101, Animus [Il] and the Alternate Realities Kit [12]. All
of these systems place heavy emphasis on programming by means of graphical

descriptions of the relationships between objects.

4.2 Future Developments

A number of improvements in the simulation environment are either
planned or ongoing. Now that we have developed a small library of application

specific classes which can be modified and re-used, development is proceeding

quickly on a number of fronts. For example, an improved description of
Emitter objects which was developed as part of a related effort to develop an

object-oriented emitter database [13] is being integrated into the
environment. This will allow modifications to the Scenario Browser so that

standard platforms can be added to a scenario complete with their "normal"
complement of Emitters. Other enhancements to the ScenarioBrowser include: a

less cluttered display format which makes more extensive use of pop-up
windows, a graphical mechanism for defining and displaying scan patterns, and

better methods for defining and displaying platform trajectories.

Most EW simulations now in use have been designed to use either "signal

level" or "pulse level" descriptions of emitter behaviour. In signal level

simulations, intercepts are modelled by calculating the time and frequency
coincidences of the emitted radar signals and the EW system's receiver. At
the simulated time of coincidence, signal amplitude is computed or retrieved

from a look-up table. It is then compared with the receiver's sensitivity to

determine whether or not the "intercepted" signal is above the EW system's
detection threshold. If it is, then the EW signal processing which would be

applied to the signal is simulated. No pulse trains are generated, and no
pulse-level signal processing is simulated. In effect, signal-level

simulations simulate time-averaged behaviour over the period of the

intercept. For example, if two or more signals are intercepted in the same
frequency/time window, pulse train deinterleaving would be simulated by a set

of predetermined rules.

Pulse level simulations involve detailed modelling of both pulse trains

and EW signal processing functions. Pulse level simulations seem to have more

credibility but are limited to simulating a small number of emitters to avoid

computational overload. Signal level simulations can simulate dense signal
environments but sacrifice fidelity. Pulse Packet and Pulse Train objects are

being added to the environment to provide a better capability to describe

signals. Pulse Packets are collections of pulses from a single source (e.g.
the pulses which might be received during illumination by the main beam of a

scanning radar). Pulse Trains are collections of pulse packets. These

objects will allow us to simulate emitters at the signal level. However, by
providing Pulse Packets with procedures for generating individual pulses, we
will retain a simultaneous capability to simulate signal processing at the

pulse level.

10 ?1(N 0 .0O Ldk rW% o N1 0
4'-V

- 54 - "

As discussed previously, the underlying structure of Receiver objects
was designed with the idea of allowing a systems engineer to define EW
receiver models directly with system block diagrams. In order to realize this
capability, it would be necessary to implement the Receiver Browser described
in Section 3. The Receiver model could be further improved by providing a

capability to automatically "compile" the network description of the Receiver
into code. Although the Processor and Task objects used to model ESM signal
processors have proven to be quite versatile and powerful, several
optimizations are possible in this area as well. The development of better
techniques for debugging simulations of multi-tasking systems is a difficult
and challenging problem. Indirection Objects which allowed messages to be
re-routed transparently would simplify the design of Monitors [14]. Finally,
incorporating the features of the Actra [51 system into the simulation

environment would lead to a much more elegant implementation of Actor objects.

5.0 CONCLUSION

In summary, we have described a prototype object-oriented EW simulation

environment which demonstrates that many of the limitations of traditional EW
simulations can be remedied. This should not be surprising. As Cox [9]
points out, object-oriented methods provide powerful tools which focus on
system-building rather than program-building. Without such tools simulation

designers are unlikely to produce results which are both timely and credible.
Most of the problems with traditional simulations which were described in

Section 2 are structural weaknesses resulting from an inability to manage
*. complexity at the systems level. While the prototype simulation environment

we have described is by no means a panacea, it is a definite step in the right
direction. Object-oriented techniques result in simulations which are easier

to develop, modify, validate, and use. We believe they hold the promise of
providing shorter development cycles, more understandable systems, and more

credible end products.

iC

'ft - 55 -

6.0 REFERENCES

[I] J.A. Altoft, Brian M. Barry, and Robert Inkol, "A Parallel Architecture
for ESM Signal Processing", DREO Report No. 942, December, 1985.

[21 A. Goldberg and D. Robson, "Smalltalk-80: The Language and its
Implementation", Addison-Wesley Publishing Company, Don Mills, 1983

[3] P. Klahr, W. Faught, and G. Martins, "Rule-Oriented Simulation", Proc.
International Conference on Cybernetics and Society, Boston, October,
1980, pp. 350-354.

[4] P. Klahr, D. McArthur, S. Narain, and E. Best, "SWIRL: Simulating
Warfare in the ROSS Language", Rand Report N-1885-AF, Sept. 1982.

[51 D.A. Thomas, W.R. Lalonde and John Pugh, "A
Multitasking/Multiprocessing Smalltalk", SCS-TR-92, School of Computer
Science, Carleton University, Ottawa, May, 1986.

[6] James F. Cunningham, et.al., "Modelling an EW System Using an Object
Oriented Approach", Proc. Expert Systems in Government Symposium,
McLean, Virginia, October, 1985, pp. 406-413.

[71 W. Morven Gentleman, "Using the Harmony Operating System", National
Research Council of Canada Report No. 24685, May 1985.

% [8] D.A. Thomas, "Object Oriented Design of Multiprocessor Software Using
the Harmony Operating System", Dy-4 Systems Design Note, 1987.

[91 Brad J. Cox, "Object Oriented Programming: An Evolutionary Approach",
Addison-Wesley Publishing Company, Don Mills, 1986.

[101 Alan Borning, "The Programming Language Aspects of ThingLab, a
Constraint-Oriented Simulation Laboratory", ACM Transactions on
Programming Languages and Systems, Vol. 3, No.4, October 1981.

[111 Robert A. Duisberg, "Animated Graphical Interfaces Using Temporal
Constraints", Technical Report No. CR-86-05, Computer Research
Laboratory, Tektronix Industries, Beaverton, Oregon, 1986.

[121 Randall B. Smith, "The Alternate Reality Kit, An Animated Environment
for Creating Interactive Simulations", Proc. IEEE Computer Society
Workshop on Visual Languages, Dallas, June, 1986.

[131 J.A. Altoft and Brian M. Barry, "An Object-Oriented Emitter Database
for EW Applications", DREO Technical Note 87-25, September, 1987.

d?

[14] Wilf R. Lalonde, Private Communication, October 1986.

%% % '

SECUAIITv CLASSIFICATION. OF FORM
(highest classification of Title, Abstract. Keywords)

(Secirty ciasiicioi of title. bodfy of abstaiac allndxng Ornnoicior must be snoredl whiit the Overall 00cument is Classifiedi

1 ORIGINATOR 1the name and address of the organiration preparing the document 2 SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring (overall security class-fcatio of the documert.
a contractor's report, or tasking agency. are entered in section 8.) inciudrig Special warning terms if applicable)

DEFENCE RESERC E-STABI.ISHMENT 0'11, A.W

1)PRMN FNAT JONAT. DEFFNCE%
SHIRLEY BAY, OTTAWA, ONTARIO KI\ A ' CANADA\U CAS ED 46)
3,TITLE (the complete document title as indicated on the title page. Its class,fication Should be indicated by the appropriate %

abbreviation (S,C.P or U) in parentheses after the title.)

OBJECT-ORIENTED SIMUL.ATTON 0O: EW SYSI-EMS (')

4. AUTHORS (Last name, first name, middle initial. If military. show rank, e.g. Doe. Mal .john E.)

BARRY, BRIAN M.

5 DATE OF PUBLICATION (month arid yea, of Publication of 6a NO OF PAGES (total 6tb NO. OF REPS totlal citec in
do-ument containing informat.on Include document)

Annexes, Appendices. etc.)
DECEMBER 1987 61 14

6 DESCRIPTIVE NOTES (the category of the documen., e g. technical report, techicai note or memorandum. if appropriate, enter the type of
reorl, e.g. interim, progress. summary. annual c, final. Give tle inclusive dates whien a specf~c reporting period is covered.)

DRE() TECHNICAL NOTEI 8 SPONSORING ACTIVITY (thie name of the department project office or laboratory sponsoring the research and development. Include the
address.)

S.
9a PROJECT OR GRANT NO (if appropriate, the applicable research 9b. CONTRACT NO (:i appropriate. tre soolicable number under

anc development project or prant number under which the document whlch the document, was written) D
was written. Please specify whether project or grant)

O___________ILB13______________________

tCa ORIGINATOR'S DOCUMENT NUMBER (the official document 10b OTHER DOCUME-NT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by Tne originator or by' the
activity -his number must be unique to this document.) sponsor)

U DREG TECHNICAL NOTE 87-31 DRP 87-368

I DOCUMENT AVAILABILITY lany limitations on further dissemination of the document. other Inan those imposed by security classification)

X4Unlimited distribution
j Distribution limited to defence departments and defence contractors. further distribution ony as approved

II Distribution limited to defence departments and Canadian defence contractors; further distribution only as approvedI

Distribution limited to government departments and agencies; further distribution only as approvedI
IIDistribution limited to defence departments; further distribution only as approved
I Other (please specify):

1 2 DOCUMENT ANNOUNCEMENT (anyv limitation to the bibliographic announcement of this document. This will norma!!y correspond to
the Document Availability (11) However, where further distribution (beyond the audience specified in 1t) is possible, a wider

announcement audience may be selected.)

UNCLA SSITHEl)I
SECURITY CLASSIFICATION OF FORM

DC003 2/06/87

"r nllir~ Nlll *f

VNC LA SS I I" 1) '

SECURITY CLASSIFICATION OF FORM '

13 ABSTRACT Ia brief and factual Summrlay of the document it may also appear elsewhere int the body of the document itself 11 is highiy

desrabse that the abstract of classified documents be unclassified Each paragraph of the abstract shall begin with an indication of the

security classficationi of ine information in the paragrapt, (unless the document itself is unclassified) represented as (S). (C). 11R). or (Ui

Ii is not necessary to include here abstracts in both of fica languages unless the teAt is bilinguali. FI

(S Simul at ions of cokmpl ex lWli systems are d if Iicul t to builId and virtuiall1y
mos) - en

impossible to thorough]ly val idate. As a conlsequence, sytmsogstrs tn

to regard results derived from simulations as suspect, preferring to relay instead on

1.ihoratitrv testing and field trials for performance evaluations. We suggest that the

rea pobem may be that trad itilonal simulations do not provide the kind of modellIing

(1d ;tnalvsis tools Which the systems engineer really needs. in this paper a prototype

tf-or a new, kind of EkW s imulat ion environment- Which supports an object-oriented approach

to) node 11 ing and s imulat ion is desc ribed . We wi 11. provide some background information 0

onI object-oriented programming, describe the software architecture of the simulation d

efly'irionment, :ind discuss several examples which illustrate its use. i

14 iKEY"AORDS. DESCRIPTORS or IDENTIFIERS isechnciv meaningful terms or Short Phrases that characterize a document and could be
helpfu: in cataloguing the document They Sriouid be selected So that, no security classifical'on is required. Identifiers, such as equipment

mode, cesgnatonr. trade name, miwa' P'O;ect code name, geographic location may also oe included. 14 Possible keywords should be selected

.Onn 8 DoI'5hed thesaurus. e g Thesau.us of Engineering and Scientiflic Terms (7ESTI and that thesaurus-identified, If it is not Possible to

seec' o''' termrs wriir. are UnclasS,4ea, the Classification of each should be inocated as with the ttief

S i 7n!1 at i inIn

Oh er t-Or ient ed Programming
1KW Syste-ms Anlalysis%
V I i da t i on

Small talIk

UNCLASIFIE

SE UYCLASSIFIAINOFFR

~NA. e

- %N

.e.-I~~ IN V O

lp
i - N

P6I

